题目内容
已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥|x|,
两边平方整理得3x2+4x+1≥0,解得x≤﹣1或
,
∴原不等式的解集为
(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,
令h(x)=|2x+1|﹣|x|,则 h(x)=
故
,从而所求实数a的范围为
两边平方整理得3x2+4x+1≥0,解得x≤﹣1或
∴原不等式的解集为
(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,
令h(x)=|2x+1|﹣|x|,则 h(x)=
故
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|