题目内容

数列{bn}满足b1=2,且-+ =0(n≥1),

(1)求数列{bn}的通项公式;

(2)记bn=,求数列{anbn}的前n项和.

解:(1)由-+ =0,得bn+1=2bn-.                                                   ?

bn+1-=2(bn-),b1-=≠0.                                                                                 ?

所以bn-是首项为,公比q=2的等比数列,故bn-=·2n,即bn=·2n+(n≥1).

?

(2)由bn=,得anbn=bn+1.                                                                            ?

sn=a1b1+a2b2+…+anbn=(b1+b2+…+bn)+n,故Sn=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网