题目内容
设f(x)=ln(x+1)+
+ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=
x在(0,0)点相切。
(1)求a,b的值;
(2)证明:当0<x<2时,f(x)<
。
(1)求a,b的值;
(2)证明:当0<x<2时,f(x)<
解:(1)由y=f(x)过(0,0),
∴f(0)=0,=
∴b=-1
∵曲线y=f(x)与直线
在(0,0)点相切
∴y′|x=0=
∴a=0;
(2)由(1)知f(x)=ln(x+1)+
由均值不等式,当x>0时,
,
∴
①
令k(x)=ln(x+1)-x,
则k(0)=0,k′(x)=
,
∴k(x)<0
∴ln(x+1)<x,②
由①②得,当x>0时,f(x)<
记h(x)=(x+6)f(x)-9x,
则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)-9<
<
=
∴h(x)在(0,2)内单调递减,
又h(0)=0,
∴h(x)<0
∴当0<x<2时,f(x)<
。
∴f(0)=0,=
∴b=-1
∵曲线y=f(x)与直线
∴y′|x=0=
∴a=0;
(2)由(1)知f(x)=ln(x+1)+
由均值不等式,当x>0时,
∴
令k(x)=ln(x+1)-x,
则k(0)=0,k′(x)=
∴k(x)<0
∴ln(x+1)<x,②
由①②得,当x>0时,f(x)<
记h(x)=(x+6)f(x)-9x,
则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)-9<
<
=
∴h(x)在(0,2)内单调递减,
又h(0)=0,
∴h(x)<0
∴当0<x<2时,f(x)<
练习册系列答案
相关题目