题目内容
设{an}是由正数组成的等比数列,且a5a6=81,log3a1+log3a2+…+log3a10的值是( )
| A.5 | B.10 | C.20 | D.2或4 |
∵{an}是由正数组成的等比数列,且a5a6=81,
∴a1a10=a2a9=a3a8=a4a7=a5a6=81,
∴log3a1+log3a2+…+log3a10
=log3(a1?a2?…?a10)
=log3(a5a6)5
=5log3(a5a6)
=5log381
=5?4=20
故选C.
∴a1a10=a2a9=a3a8=a4a7=a5a6=81,
∴log3a1+log3a2+…+log3a10
=log3(a1?a2?…?a10)
=log3(a5a6)5
=5log3(a5a6)
=5log381
=5?4=20
故选C.
练习册系列答案
相关题目