题目内容
已知函数y=xf'(x)的图象如右图所示(其中f'(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是________

③
分析:根据函数y=xf′(x)的图象,依次判断f(x)在区间(-∞,-1),(-1,0),(0,1),(1,+∞)上的单调性即可.
解答:由函数y=xf′(x)的图象可知:
当x<-1时,xf′(x)<0,f′(x)>0,此时f(x)增
当-1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减
当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减
当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.
综上所述,故答案为:③.
点评:本题间接利用导数研究函数的单调性,考查函数的图象问题,本题有一定的代表性,是一道好题.
分析:根据函数y=xf′(x)的图象,依次判断f(x)在区间(-∞,-1),(-1,0),(0,1),(1,+∞)上的单调性即可.
解答:由函数y=xf′(x)的图象可知:
当x<-1时,xf′(x)<0,f′(x)>0,此时f(x)增
当-1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减
当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减
当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.
综上所述,故答案为:③.
点评:本题间接利用导数研究函数的单调性,考查函数的图象问题,本题有一定的代表性,是一道好题.
练习册系列答案
相关题目