题目内容
设各项为正的数列{an}的前n项和为Sn且满足:
=
.
(Ⅰ)求an;
(Ⅱ)求Tn=
+
+…+
;
(Ⅲ)设m,n,p∈N*且m+n=2p,求证:
+
≥
.
| Sn |
| an |
| an+1 |
| 2 |
(Ⅰ)求an;
(Ⅱ)求Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
(Ⅲ)设m,n,p∈N*且m+n=2p,求证:
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
分析:(I)先化简,然后根据an=Sn-Sn-1进行化简可得(an+an-1)(an-an-1-1)=0,而an>0,则an-an-1=1,故{an}为等差数列,求出通项,注意验证首项;
(II)求出Sn,然后利用裂项求和的方法进行求和即可求出Tn的值;
(III)根据m+n=2p,则mn≤p2,然后根据基本不等式可得SmSn≤SP2,从而证得不等式成立.
(II)求出Sn,然后利用裂项求和的方法进行求和即可求出Tn的值;
(III)根据m+n=2p,则mn≤p2,然后根据基本不等式可得SmSn≤SP2,从而证得不等式成立.
解答:解:(Ⅰ)∵
=
,∴2Sn=an2+an(n≥1)…①,2Sn-1=an-12+an-1(n≥2)…②
①-②得:2an=an2-an-12+an-an-1⇒(an+an-1)(an-an-1-1)=0
∵an>0,∴an-an-1=1,故{an}为等差数列,又在①中令n=1得a1=1,
∴an=1+(n-1)•1=n…(4分)
(Ⅱ)∵an=n,∴Sn=
,
∴Tn=
+
+…+
=
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]=
.…(8分)
(Ⅲ)∵m+n=2p,∴mn≤p2,…(9分)
∴SmSn=
mn[(a1+am)(a1+an)]=
mn[
+a1(am+an)+aman]≤
mn(
+2a1ap+
)=
[
]2≤
,…(11分)
∴
+
≥2
≥
,即
+
≥
.…(12分)
| Sn |
| an |
| an+1 |
| 2 |
①-②得:2an=an2-an-12+an-an-1⇒(an+an-1)(an-an-1-1)=0
∵an>0,∴an-an-1=1,故{an}为等差数列,又在①中令n=1得a1=1,
∴an=1+(n-1)•1=n…(4分)
(Ⅱ)∵an=n,∴Sn=
| n(n+1) |
| 2 |
∴Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| 1×2 |
| 2 |
| 2×3 |
| 2 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2n |
| n+1 |
(Ⅲ)∵m+n=2p,∴mn≤p2,…(9分)
∴SmSn=
| 1 |
| 4 |
| 1 |
| 4 |
| a | 2 1 |
| 1 |
| 4 |
| a | 2 1 |
| a | 2 p |
| mn |
| p2 |
| (a1+ap)p |
| 2 |
| S | 2 p |
∴
| 1 | ||
|
| 1 | ||
|
|
| 2 | ||
|
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
点评:本题主要考查了等差数列的通项公式,以及裂项求和法求数列的和与基本不等式的应用,属于中档题.
练习册系列答案
相关题目