ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
£¨¢ñ£©ÇóC1£¬C2µÄ·½³Ì£»
£¨¢ò£©ÉèC2ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔµãOµÄÖ±ÏßlÓëC2ÏཻÓÚµãA¡¢B£¬Ö±ÏßMA£¬MB·Ö±ðÓëC1ÏཻÓÚD£¬E£®
£¨i£©Ö¤Ã÷£ºMD¡ÍME£»
£¨ii£©¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£®ÎÊ£ºÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃ
| S1 |
| S2 |
| 17 |
| 32 |
·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÀëÐÄÂʵõ½Ò»¸ö¹ØÓÚ²ÎÊýµÄ·½³Ì£¬ÔÙÀûÓÃxÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶㤵ÈÓÚC1µÄ³¤°ëÖ᳤µÃÁíÒ»¸ö·½³Ì£¬Á½¸ö·½³ÌÁªÁ¢¼´¿ÉÇó³ö²ÎÊý½ø¶øÇó³öC1£¬C2µÄ·½³Ì£»
£¨¢ò£©£¨i£©°ÑÖ±ÏßlµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃ¹ØÓÚµãA¡¢B×ø±êµÄµÈÁ¿¹ØÏµ£¬ÔÙ´úÈëÇó³ökMA•kMB=-1£¬¼´¿ÉÖ¤Ã÷£ºMD¡ÍME£»
£¨ii£©ÏȰÑÖ±ÏßMAµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃµãAµÄ×ø±ê£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|MA|£¬Í¬ÑùµÄ·½·¨Çó³ö|MB|½ø¶øÇó³öS1£¬Í¬Àí¿ÉÇóS2£®ÔÙ´úÈëÒÑÖª¾Í¿ÉÖªµÀÊÇ·ñ´æÔÚÖ±ÏßlÂú×ãÌâÖÐÌõ¼þÁË£®
£¨¢ò£©£¨i£©°ÑÖ±ÏßlµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃ¹ØÓÚµãA¡¢B×ø±êµÄµÈÁ¿¹ØÏµ£¬ÔÙ´úÈëÇó³ökMA•kMB=-1£¬¼´¿ÉÖ¤Ã÷£ºMD¡ÍME£»
£¨ii£©ÏȰÑÖ±ÏßMAµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃµãAµÄ×ø±ê£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|MA|£¬Í¬ÑùµÄ·½·¨Çó³ö|MB|½ø¶øÇó³öS1£¬Í¬Àí¿ÉÇóS2£®ÔÙ´úÈëÒÑÖª¾Í¿ÉÖªµÀÊÇ·ñ´æÔÚÖ±ÏßlÂú×ãÌâÖÐÌõ¼þÁË£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâµÃe=
=
£¬´Ó¶øa=2b£¬ÓÖ2
=a£¬½âµÃa=2£¬b=1£¬
¹ÊC1£¬C2µÄ·½³Ì·Ö±ðΪ
+y2=1£¬y=x2-1£®
£¨¢ò£©£¨i£©ÓÉÌâµÃ£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx£¬
ÓÉ
µÃx2-kx-1=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬
ÓÚÊÇx1+x2=k£¬x1x2=-1£¬ÓÖµãMµÄ×ø±êΪ£¨0£¬-1£©£¬
ËùÒÔkMA•kMB=
•
=
=
=
=-1£®
¹ÊMA¡ÍMB£¬¼´MD¡ÍME£®
£¨ii£©ÉèÖ±ÏßMAµÄбÂÊΪk1£¬ÔòÖ±ÏßMAµÄ·½³ÌΪy=k1x-1£®
ÓÉ
£¬½âµÃ
»ò
£®
ÔòµãAµÄ×ø±êΪ£¨k1£¬k12-1£©£®
ÓÖÖ±ÏßMBµÄбÂÊΪ-
£¬Í¬Àí¿ÉµÃµãBµÄ×ø±êΪ£¨-
£¬
-1£©£®
ÓÚÊÇs1=
|MA|•|MB|=
•|k1|•
•|-
|=
£®
ÓÉ
µÃ£¨1+4k12£©x2-8k1x=0£®
½âµÃ
»ò£¬
£¬ÔòµãDµÄ×ø±êΪ£¨
£¬
£©£®
ÓÖÖ±ÏßMEµÄбÂÊΪ-
£®Í¬Àí¿ÉµÃµãEµÄ×ø±êΪ£¨
£¬
£©£®
ÓÚÊÇs2=
|MD|•|ME|=
£®
¹Ê
=
(4k12+
+17)=
£¬½âµÃk12=4»òk12=
£®
ÓÖÓɵãA£¬BµÄ×ø±êµÃ£¬k=
=k1-
£®ËùÒÔk=¡À
£®
¹ÊÂú×ãÌõ¼þµÄÖ±Ïß´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³ÌΪy=
xºÍy=-
x£®
| c |
| a |
| ||
| 2 |
| b |
¹ÊC1£¬C2µÄ·½³Ì·Ö±ðΪ
| x2 |
| 4 |
£¨¢ò£©£¨i£©ÓÉÌâµÃ£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx£¬
ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬
ÓÚÊÇx1+x2=k£¬x1x2=-1£¬ÓÖµãMµÄ×ø±êΪ£¨0£¬-1£©£¬
ËùÒÔkMA•kMB=
| y1+1 |
| x1 |
| y2+1 |
| x2 |
| (kx1+1)(kx2+1) |
| x1x2 |
| k2x1x2+k(x1+x2)+1 |
| x1x2 |
| -k2+k2+1 |
| -1 |
¹ÊMA¡ÍMB£¬¼´MD¡ÍME£®
£¨ii£©ÉèÖ±ÏßMAµÄбÂÊΪk1£¬ÔòÖ±ÏßMAµÄ·½³ÌΪy=k1x-1£®
ÓÉ
|
|
|
ÔòµãAµÄ×ø±êΪ£¨k1£¬k12-1£©£®
ÓÖÖ±ÏßMBµÄбÂÊΪ-
| 1 |
| k1 |
| 1 |
| k1 |
| 1 |
| k12 |
ÓÚÊÇs1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1+k12 |
1+
|
| 1 |
| k1 |
| 1+k12 |
| 2|k1| |
ÓÉ
|
½âµÃ
|
|
| 8k1 |
| 1+4k12 |
| 4k12-1 |
| 1+4k12 |
ÓÖÖ±ÏßMEµÄбÂÊΪ-
| 1 |
| k1 |
| -8k1 |
| 4+k12 |
| 4-k12 |
| 4+k12 |
ÓÚÊÇs2=
| 1 |
| 2 |
| 32(1+k12)•|k1| |
| (1+4k12)(k12+4) |
¹Ê
| s1 |
| s2 |
| 1 |
| 64 |
| 4 |
| k12 |
| 17 |
| 32 |
| 1 |
| 4 |
ÓÖÓɵãA£¬BµÄ×ø±êµÃ£¬k=
k12-
| ||
k1+
|
| 1 |
| k1 |
| 3 |
| 2 |
¹ÊÂú×ãÌõ¼þµÄÖ±Ïß´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³ÌΪy=
| 3 |
| 2 |
| 3 |
| 2 |
µãÆÀ£º±¾ÌâÊǶÔÍÖÔ²ÓëÅ×ÎïÏßÒÔ¼°Ö±ÏßÓëÅ×ÎïÏߺÍÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌâµÄ¿¼²é£®ÊÇÒ»µÀÕûÀí¹ý³ÌºÜÂé·³µÄÌ⣬ÐèÒªÒªÈÏÕæ£¬Ï¸ÖµÄ̬¶È²ÅÄܰÑÌâÄ¿×÷ºÃ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿