题目内容
(12分) 设函数
(
),
.
(1) 将函数
图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3) 对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
【答案】
(1)
,值域为
(2)解法一:不等式
的解集中的整数恰有3个,
等价于
恰有三个整数解,故
,
令
,由
且
,
所以函数
的一个零点在区间
,
则另一个零点一定在区间
,
故
解之得
.
解法二:
恰有三个整数解,故
,即
,
,
所以
,又因为
,
所以
,解之得
.
(3)设
,则
.
所以当
时,
;当
时,
.
因此
时,
取得最小值
,
则
与
的图象在
处有公共点
.
设
与
存在 “分界线”,方程为
,
即
,
由
在
恒成立,则
在
恒成立 .
所以
成立,
因此
.
下面证明
恒成立.
设
,则
.
所以当
时,
;当
时,
.
因此
时
取得最大值
,则
成立.
故所求“分界线”方程为:
.
【解析】略
练习册系列答案
相关题目
设函数y=
的定义域为M,值域为N,那么( )
| 1 | ||
1+
|
| A、M={x|x≠0},N={y|y≠0} |
| B、M={x|x≠0},N={y|y∈R} |
| C、M={x|x<0且x≠-1,或x>0},N={y|y<0或0<y<1或y>1} |
| D、M={x|x<-1或-1<x<0或x>0},N={y|y≠0} |