题目内容
已知函数f(x)=loga
(a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数r与a的值
| 1-mx |
| x-1 |
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数r与a的值
(1)由已知条件得f(-x)+f(x)=0对定义域中的x均成立.
所以loga
+loga
=0,
即
•
=1,
即m2x2-1=x2-1对定义域中的x均成立.
所以m2=1,即m=1(舍去)或m=-1.
(2)由(1)得f(x)=loga
,
设t=
=
=1+
,
当x1>x2>1时,t1-t2=
-
=
,所以t1<t2.
当a>1时,logat1<logat2,即f(x1)<f(x2).所以当a>1时,f(x)在(1,+∞)上是减函数.
同理当0<a<1时,f(x)在(1,+∞)上是增函数.
(3)因为函数f(x)的定义域为(-∞,-1)∪(1,+∞),
所以①:r<a-2<-1,0<a<1.
所以f(x)在(r,a-2)为增函数,要使值域为(1,+∞),
则
(无解)
②:1<r<a-2,所以a>3.所以f(x)在(r,a-2)为减函数,要使f(x)的值域为(1,+∞),
则
所以a=2+
,r=1.
所以loga
| mx+1 |
| -x-1 |
| 1-mx |
| x-1 |
即
| mx+1 |
| -x-1 |
| 1-mx |
| x-1 |
即m2x2-1=x2-1对定义域中的x均成立.
所以m2=1,即m=1(舍去)或m=-1.
(2)由(1)得f(x)=loga
| 1+x |
| x-1 |
设t=
| x+1 |
| x-1 |
| x-1+2 |
| x-1 |
| 2 |
| x-1 |
当x1>x2>1时,t1-t2=
| 2 |
| x1-1 |
| 2 |
| x2-1 |
| 2(x2-x1) |
| (x1-1)(x2-1) |
当a>1时,logat1<logat2,即f(x1)<f(x2).所以当a>1时,f(x)在(1,+∞)上是减函数.
同理当0<a<1时,f(x)在(1,+∞)上是增函数.
(3)因为函数f(x)的定义域为(-∞,-1)∪(1,+∞),
所以①:r<a-2<-1,0<a<1.
所以f(x)在(r,a-2)为增函数,要使值域为(1,+∞),
则
|
②:1<r<a-2,所以a>3.所以f(x)在(r,a-2)为减函数,要使f(x)的值域为(1,+∞),
则
|
所以a=2+
| 3 |
练习册系列答案
相关题目