题目内容
已知等比数列{an}的前n项和An=(
)n-c.数列{bn}(bn>0)的首项为c,且前n项和Sn满足
-
=1(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若数列{
}前n项和为Tn,问Tn>
的最小正整数n是多少?.
| 1 |
| 3 |
| Sn |
| Sn-1 |
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若数列{
| 1 |
| bnbn+1 |
| 1001 |
| 2010 |
分析:(1)a1=A1=
-c, a2=A2-A1=(
-c)-(
-c)=-
,a3=A3-A2=(
-c)-(
-c)=-
,又数列{an}成等比数列,由此能求出数列{an}的通项公式.
(2)由
-
=1(n≥2), S1=b1=1,知数列{
}是首项为1公差为1的等差数列.所以Sn=n2.由此能求出数列{的通项公式.
(3)Tn=
+
+
+…+
=
+
+
+…+
=
.由Tn=
>
得n>
,由此能求出满足Tn>
的最小正整数.
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 3 |
| 2 |
| 9 |
| 1 |
| 27 |
| 1 |
| 9 |
| 2 |
| 27 |
(2)由
| Sn |
| Sn-1 |
| Sn |
(3)Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn+1 |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
| n |
| 2n+1 |
| n |
| 2n+1 |
| 1001 |
| 2010 |
| 1001 |
| 8 |
| 1001 |
| 2010 |
解答:解:(1)a1=A1=
-c, a2=A2-A1=(
-c)-(
-c)=-
,a3=A3-A2=(
-c)-(
-c)=-
,
又数列{an}成等比数列,
a1=
=
=-
=
-c,
所以 c=1;
又公比q=
=
,
所以an=-
×(
) n-1=-2×(
)n,n∈N*.
(2)∵
-
=1(n≥2), S1=b1=1,
∴数列{
}是首项为1公差为1的等差数列.
∴
=1+(n-1)×1.
∴Sn=n2.
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1.
∴bn=2n-1(n∈N*);
(3)Tn=
+
+
+…+
=
+
+
+…+
=
(1-
)+
(
-
)+…+
×
=
(1-
)
=
.
由Tn=
>
得n>
,
故满足Tn>
的最小正整数为126.
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 3 |
| 2 |
| 9 |
| 1 |
| 27 |
| 1 |
| 9 |
| 2 |
| 27 |
又数列{an}成等比数列,
a1=
| a22 |
| a3 |
| ||
-
|
| 2 |
| 3 |
| 1 |
| 3 |
所以 c=1;
又公比q=
| a2 |
| a1 |
| 1 |
| 3 |
所以an=-
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(2)∵
| Sn |
| Sn-1 |
∴数列{
| Sn |
∴
| Sn |
∴Sn=n2.
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1.
∴bn=2n-1(n∈N*);
(3)Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn+1 |
=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
由Tn=
| n |
| 2n+1 |
| 1001 |
| 2010 |
| 1001 |
| 8 |
故满足Tn>
| 1001 |
| 2010 |
点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关题目