题目内容
若a,b∈R+,则使
+
≤m•
恒成立的最小正数m=______.
| a |
| b |
| a+b |
∵0≤(
-
)2
∴0≤a+b-2
∴a+b+2
≤2a+2b
∵
≤a+b
∴
≤
即
≤
由原式易得
≤m
因为求使
+
≤m•
恒成立的最小正数m
所以m≥
故答案为:
| a |
| b |
∴0≤a+b-2
| ab |
∴a+b+2
| ab |
∵
(
| ||||
| 2 |
∴
| ||||
|
| a+b |
即
| ||||
|
| 2 |
由原式易得
| ||||
|
因为求使
| a |
| b |
| a+b |
所以m≥
| 2 |
故答案为:
| 2 |
练习册系列答案
相关题目