题目内容
已知函数f(x)=2cosxcos(
-x)-
sin2x+sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设x∈[-
,
],求f(x)的值域.
| π |
| 6 |
| 3 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设x∈[-
| π |
| 3 |
| π |
| 2 |
(Ⅰ)∵f(x)=2cosxcos(
-x)-
sin2x+sinxcosx
=
(cos2x-sin2x)+2sinxcosx
=
cos2x+sin2x
=2sin(2x+
).
∴f(x)的最小正周期为π.
(Ⅱ)∵x∈[-
,
],
∴-
≤2x+
≤
,
又f(x)=2sin(2x+
),
∴f(x)∈[-
, 2],
f(x)的值域为[-
, 2].
| π |
| 6 |
| 3 |
=
| 3 |
=
| 3 |
=2sin(2x+
| π |
| 3 |
∴f(x)的最小正周期为π.
(Ⅱ)∵x∈[-
| π |
| 3 |
| π |
| 2 |
∴-
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
又f(x)=2sin(2x+
| π |
| 3 |
∴f(x)∈[-
| 3 |
f(x)的值域为[-
| 3 |
练习册系列答案
相关题目