题目内容
已知函数f(x)=
x3+ax2+6x-1.当x=2时,函数f(x)取得极值.
(I)求实数a的值;
(II)若1≤x≤3时,方程f(x)+m=0有两个根,求实数m的取值范围.
| 1 | 3 |
(I)求实数a的值;
(II)若1≤x≤3时,方程f(x)+m=0有两个根,求实数m的取值范围.
分析:(I)因为f(x)在x=3是取极值,则求出f′(x)得到f′(3)=0解出求出a即可.
(II)由(Ⅰ)得f(x),若关于x的方程f(x)+m=0在[1,3]上恰有两个不同的实数根,即函数f(x)的图象与直线y=-m有两个交点,利用导数即求函数f(x)在区间[1,3]上的最值,结合图象可得实数m的取值范围.
(II)由(Ⅰ)得f(x),若关于x的方程f(x)+m=0在[1,3]上恰有两个不同的实数根,即函数f(x)的图象与直线y=-m有两个交点,利用导数即求函数f(x)在区间[1,3]上的最值,结合图象可得实数m的取值范围.
解答:
解:(I)由f(x)=
x3+ax2+6x-1,
则 f'(x)=x2+2ax+6
因在x=2时,f(x)取到极值
所以f'(2)=0⇒4+4a+6=0
解得,a=-
(II)由(I)得f(x)=
x3-
x2+6x-1
且1≤x≤3
则f'(x)=x2-5x+6=(x-2)(x-3)
由f'(x)=0,解得x=2或x=3;
f'(x)>0,解得x>3或x<2;
f'(x)<0,解得2<x<3
∴f(x)的递增区间为:(-∞,2)和(3,+∞);
f(x)递减区间为:(2,3)
又f(1)=
,f(2)=
,f(3)=
要f(x)+m=0有两个根,
则f(x)=-m有两解,分别画出函数y=f(x)与y=-m的图象,如图所示.
由图知,实数m的取值范围:-
≤m<-
.
| 1 |
| 3 |
则 f'(x)=x2+2ax+6
因在x=2时,f(x)取到极值
所以f'(2)=0⇒4+4a+6=0
解得,a=-
| 5 |
| 2 |
(II)由(I)得f(x)=
| 1 |
| 3 |
| 5 |
| 2 |
且1≤x≤3
则f'(x)=x2-5x+6=(x-2)(x-3)
由f'(x)=0,解得x=2或x=3;
f'(x)>0,解得x>3或x<2;
f'(x)<0,解得2<x<3
∴f(x)的递增区间为:(-∞,2)和(3,+∞);
f(x)递减区间为:(2,3)
又f(1)=
| 17 |
| 6 |
| 11 |
| 3 |
| 7 |
| 2 |
要f(x)+m=0有两个根,
则f(x)=-m有两解,分别画出函数y=f(x)与y=-m的图象,如图所示.
由图知,实数m的取值范围:-
| 11 |
| 3 |
| 7 |
| 2 |
点评:考查利用导数研究函数的极值、单调性等问题,体现了数形结合和转化的思想方法,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
练习册系列答案
相关题目