题目内容
已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*)(1)求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求Tn.
分析:(1)由Sn=2an-n,知a1=1,Sn-1=2an-1-(n-1),n≥2,n∈N+,故an=2an-1+1,an+1=2(an-1+1),n≥2,n∈N+,由此能求出数列{an}的通项公式;
(2)由bn=(2n+1)an+2n+1,知bn=(2n+1)•2n,故Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)•2n,再由错位相减法能够得到数列{bn}的前n项和Tn.
(2)由bn=(2n+1)an+2n+1,知bn=(2n+1)•2n,故Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)•2n,再由错位相减法能够得到数列{bn}的前n项和Tn.
解答:解:(1)∵Sn=2an-n,∴a1=1,
∵Sn=2an-n,Sn-1=2an-1-(n-1),n≥2,n∈N+,
两式相减,得an=2an-1+1,
∴an+1=2(an-1+1),n≥2,n∈N+,
∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,
∴an+1=2n,
∴an=2n-1.
(2)∵bn=(2n+1)an+2n+1,
∴bn=(2n+1)•2n,
∴Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)•2n,
2Tn=3×22+5×23+…+(2n-1)•2n+1,
∴①-②得:-Tn=3×2+2(22+23+…+2n)-(2n+1)•2n+1
=6+2×
-(2n+1)•2n+1
=-2+2n+2-(2n+1)•2n+1=-2-(2n-1)•2n+1,
∴Tn=2+(2n-1)•2n+1.
∵Sn=2an-n,Sn-1=2an-1-(n-1),n≥2,n∈N+,
两式相减,得an=2an-1+1,
∴an+1=2(an-1+1),n≥2,n∈N+,
∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,
∴an+1=2n,
∴an=2n-1.
(2)∵bn=(2n+1)an+2n+1,
∴bn=(2n+1)•2n,
∴Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)•2n,
2Tn=3×22+5×23+…+(2n-1)•2n+1,
∴①-②得:-Tn=3×2+2(22+23+…+2n)-(2n+1)•2n+1
=6+2×
| 22(1-2n-1) |
| 1-2 |
=-2+2n+2-(2n+1)•2n+1=-2-(2n-1)•2n+1,
∴Tn=2+(2n-1)•2n+1.
点评:本题考查用构造求解数列的通项公式和利用错位相减法求解数列的前n项和,解题时要注意数列性质的灵活运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |