题目内容
在数列{an} 中,a1=1,a n+1=3an+(n+1)•3n(n∈N*),
(Ⅰ)设bn=
,求数列{bn} 的通项公式;
(Ⅱ)求数列{
}的前n项和Sn.
(Ⅰ)设bn=
| an |
| 3n |
(Ⅱ)求数列{
| an |
| n |
分析:(Ⅰ)通过a n+1=3an+(n+1)•3n,两边同除3n+1,得到数列{
},利用累加法求数列{bn} 的通项公式;
(Ⅱ)结合(Ⅰ)求出数列{an} 的通项公式,得到数列{
}的通项公式,利用错位相减法直接求数列{
}的前n项和Sn.
| an |
| 3n |
(Ⅱ)结合(Ⅰ)求出数列{an} 的通项公式,得到数列{
| an |
| n |
| an |
| n |
解答:解:(Ⅰ)a n+1=3an+(n+1)•3n,两边同除3n+1,
∴
=
+
,
即bn+1=bn+
,
所以bn=(bn-bn-1)+(bn-1-bn-2)+…+( b2-b1)+b1,又b1=
=
,
故bn=
=
.
(Ⅱ)由(Ⅰ)可知bn=
,得an= 3nbn=
,所以
=
=
,Sn=
+
+
+…+
…①
3Sn=
+
+
+…+
…②
①-②得:-2Sn=
+
(3+32+33+…+3n-1) -
,
所以Sn=
.
∴
| an+1 |
| 3n+1 |
| an |
| 33 |
| n+1 |
| 3 |
即bn+1=bn+
| n+1 |
| 3 |
所以bn=(bn-bn-1)+(bn-1-bn-2)+…+( b2-b1)+b1,又b1=
| a1 |
| 3 |
| 1 |
| 3 |
故bn=
| n+(n-1)+…+2+1 |
| 3 |
| n(n+1) |
| 6 |
(Ⅱ)由(Ⅰ)可知bn=
| an |
| 3n |
| n(n+1)•3n-1 |
| 2 |
| an |
| n |
| 3nbn |
| n |
| (n+1)•3n-1 |
| 2 |
| 2•30 |
| 2 |
| 3•31 |
| 2 |
| 4•32 |
| 2 |
| (n+1)•3n-1 |
| 2 |
3Sn=
| 2•31 |
| 2 |
| 3•32 |
| 2 |
| 4•33 |
| 2 |
| (n+1)•3n |
| 2 |
①-②得:-2Sn=
| 2•30 |
| 2 |
| 1 |
| 2 |
| (n+1)•3n |
| 2 |
所以Sn=
| (2n+1)•3n-1 |
| 2 |
点评:本题是中档题考查数列通项公式的应用,数列前n项和的求法,考查计算能力,转化思想.
练习册系列答案
相关题目