题目内容

已知椭圆的短轴长为2,焦点坐标分别是(-1,0)和(1,0),
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点,求m的取值范围.
【答案】分析:(1)先由题分析出椭圆的焦点在X轴上且2b=2,c=1;求出a,b即可求椭圆的标准方程;
(2)联立直线方程与椭圆方程,整理为关于的一元二次方程;再结合直线y=x+m与这个椭圆交于不同的两点知道对应的方程有两个不等实根,判别式大于0即可求出m的取值范围.
解答:解:(1)由题得椭圆的焦点在X轴上且2b=2,c=1
∴b=,a2=b2+c2=4.
∴椭圆的标准方程:=1.
(2)由消去Y整理得:7x2+8mx+4m2-12=0.
由直线y=x+m与这个椭圆交于不同的两点得△=(8m)2-4×7×(4m2-12)>0⇒m2<7⇒
所以m的取值范围是(-).
点评:本题涉及到椭圆标准方程的求法.在求圆锥曲线的标准方程时,一定要先判断焦点所在位置,避免出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网