题目内容
已知有穷数列{an}只有2k项(整数k≥2),首项a1=2,设该数列的前n项和为Sn,且Sn=
(n=1,2,3,…,2k-1),其中常数a>1.
(1)求{an}的通项公式;
(2)若a=2
,数列{bn}满足bn=log2an,(n=1,2,3,…,2k),Tn=
(b1+b2+b3+…+bn),求证:1≤Tn≤2.
| an+1-2 |
| a-1 |
(1)求{an}的通项公式;
(2)若a=2
| 2 |
| 2k-1 |
| 1 |
| n |
(1)n≥2时,Sn=
,Sn-1=
两式相减得Sn-Sn-1=
,an=
,
∴an+1=a•an,
当n=1时,a1=S1=
=2,
∴a2=2a,
则,数列{an}的通项公式为an=2•an-1.
(2)把数列{an}的通项公式代入数列{bn}的通项公式,
可得bn=
log2(a1a2an)
=
(log2a1+log2a2++log2an)
=
[1+(1+
)+(1+
)++(1+
)]
=
[n+
•
]=1+
∵1≤n≤2k,
故1≤bn≤2
| an+1-2 |
| a-1 |
| an-2 |
| a-1 |
两式相减得Sn-Sn-1=
| an+1-an |
| a-1 |
| an+1-an |
| a-1 |
∴an+1=a•an,
当n=1时,a1=S1=
| a2-2 |
| a-1 |
∴a2=2a,
则,数列{an}的通项公式为an=2•an-1.
(2)把数列{an}的通项公式代入数列{bn}的通项公式,
可得bn=
| 1 |
| n |
=
| 1 |
| n |
=
| 1 |
| n |
| 2 |
| 2k-1 |
| 4 |
| 2k-1 |
| 2n-2 |
| 2k-1 |
=
| 1 |
| n |
| n(n-1) |
| 2 |
| 2 |
| 2k-1 |
| n-1 |
| 2k-1 |
∵1≤n≤2k,
故1≤bn≤2
练习册系列答案
相关题目