题目内容
已知函数f(x)=
| ||
| x |
(1)若数列{an}的前n项和为Sn,试比较Sn与nan的大小;
(2)若a1=1,证明:Sn+an>1.
分析:(1)由f′(x)=
=
>0,知f(x)在(0,+∞)上为增函数.所以an+1=
>0.又an+1-
an=
-
an=
,an+1<
an.所以a1>2a2>22a3>…>2n-1an,由此能导出Sn>nan.
(2)由Sn>(2n-1)an,知Sn+an>2nan.只需比较an与
即可.an+1-1=
-1=
(an2+1)-(1+an)2=-2an<0,所以0<an+1<1,0<an<1.由此能够证明an>
>
.∴Sn+an>2nan>2n×
=1.
| ||||||
| x2 |
1-
| ||||
| x2 |
| ||
| an |
| 1 |
| 2 |
| ||
| an |
| 1 |
| 2 |
| ||||
| an |
| 1 |
| 2 |
(2)由Sn>(2n-1)an,知Sn+an>2nan.只需比较an与
| 1 |
| 2n |
| ||
| an |
| ||
| an |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
解答:解:(1)f(x)=
(x>0),
则f′(x)=
=
>0,
∴f(x)在(0,+∞)上为增函数.(2分)
∵an=f-1(an+1),f(x)=
>0(x>0)
∴an+1=
>0.(4分)
又an+1-
an=
-
an=
,
∵(
)2-(1+
an2)2=-
an4<0,
∴an+1<
an.
∴a1>2a2>22a3>>2n-1an,
∴Sn=a1+a2+an>2n-1an+2n-2an+an=(2n-1)an,
∴Sn-nan>(2n-n-1)an,∵2n-n-1=(1+1)n-n-1≥0
∴Sn-nan>0,∴Sn>nan.(8分)
(2)由(1)知Sn>(2n-1)an,∴Sn+an>2nan.
下面只需比较an与
即可.(9分)
∵an+1-1=
-1=
(an2+1)-(1+an)2=-2an<0
∴0<an+1<1,∴0<an<1.
∴an=
<
,∴
>
-
,即
<
+1.
∴
+1<2(
+1),∴
+1<2n-1(
+1)=2n,
故an>
>
.∴Sn+an>2nan>2n×
=1.(12分)
| ||
| x |
则f′(x)=
| ||||||
| x2 |
1-
| ||||
| x2 |
∴f(x)在(0,+∞)上为增函数.(2分)
∵an=f-1(an+1),f(x)=
| ||
| x |
∴an+1=
| ||
| an |
又an+1-
| 1 |
| 2 |
| ||
| an |
| 1 |
| 2 |
| ||||
| an |
∵(
| an2+1 |
| 1 |
| 2 |
| 1 |
| 4 |
∴an+1<
| 1 |
| 2 |
∴a1>2a2>22a3>>2n-1an,
∴Sn=a1+a2+an>2n-1an+2n-2an+an=(2n-1)an,
∴Sn-nan>(2n-n-1)an,∵2n-n-1=(1+1)n-n-1≥0
∴Sn-nan>0,∴Sn>nan.(8分)
(2)由(1)知Sn>(2n-1)an,∴Sn+an>2nan.
下面只需比较an与
| 1 |
| 2n |
∵an+1-1=
| ||
| an |
| ||
| an |
∴0<an+1<1,∴0<an<1.
∴an=
| 2an+1 |
| 1-an+12 |
| 2an+1 |
| 1-an+1 |
| 1 |
| an |
| 1 |
| 2an+1 |
| 1 |
| 2 |
| 1 |
| an+1 |
| 2 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
故an>
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n |
点评:本题考查数列的综合运用,解题时要注意公式的合理运用.
练习册系列答案
相关题目