题目内容

已知函数f(x)=
x2+1
-1
x
(x>0)
,数列{an}满足a1>0,且an=f-1(an+1)(n∈N*).
(1)若数列{an}的前n项和为Sn,试比较Sn与nan的大小;
(2)若a1=1,证明:Sn+an>1.
分析:(1)由f(x)=
x2
x2+1
-(
x2+1
-1)
x2
=
1-
1
x2+1
x2
>0
,知f(x)在(0,+∞)上为增函数.所以an+1=
an2+1
-1
an
>0
.又an+1-
1
2
an
=
an2+1
-1
an
-
1
2
an=
an2+1
-(1+
1
2
an2)
an
an+1
1
2
an
.所以a1>2a2>22a3>…>2n-1an,由此能导出Sn>nan
(2)由Sn>(2n-1)an,知Sn+an>2nan.只需比较an
1
2n
即可.an+1-1=
an2+1
-1
an
-1=
an2+1
-(1+an)
an
(an2+1)-(1+an2=-2an<0,所以0<an+1<1,0<an<1.由此能够证明an
1
2n-1
1
2n
.∴Sn+an2nan2n×
1
2n
=1
解答:解:(1)f(x)=
x2+1
-1
x
(x>0)

f(x)=
x2
x2+1
-(
x2+1
-1)
x2
=
1-
1
x2+1
x2
>0

∴f(x)在(0,+∞)上为增函数.(2分)
∵an=f-1(an+1),f(x)=
x2+1
-1
x
>0(x>0)

an+1=
an2+1
-1
an
>0
.(4分)
an+1-
1
2
an
=
an2+1
-1
an
-
1
2
an=
an2+1
-(1+
1
2
an2)
an

(
an2+1
)2-(1+
1
2
an2)2=-
1
4
an4<0

an+1
1
2
an

∴a1>2a2>22a3>>2n-1an
∴Sn=a1+a2+an>2n-1an+2n-2an+an=(2n-1)an
∴Sn-nan>(2n-n-1)an,∵2n-n-1=(1+1)n-n-1≥0
∴Sn-nan>0,∴Sn>nan.(8分)
(2)由(1)知Sn>(2n-1)an,∴Sn+an>2nan
下面只需比较an
1
2n
即可.(9分)
an+1-1=
an2+1
-1
an
-1=
an2+1
-(1+an)
an
(an2+1)-(1+an2=-2an<0
∴0<an+1<1,∴0<an<1.
an=
2an+1
1-an+12
2an+1
1-an+1
,∴
1
an
1
2an+1
-
1
2
,即
1
an+1
2
an
+1

1
an+1
+1<2(
1
an
+1)
,∴
1
an+1
+1<2n-1(
1
a1
+1)=2n

an
1
2n-1
1
2n
.∴Sn+an2nan2n×
1
2n
=1
.(12分)
点评:本题考查数列的综合运用,解题时要注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网