题目内容
已知函数f(x)=sinxcosx+sin2x.(1)求f(x)的值域和最小正周期;
(2)设α∈(0,π),且f(α)=1,求α的值.
分析:(1)先利用二倍角公式和两角和公式对函数解析式化简整理,根据正弦函数的性质求得函数的最大和最小值,函数的值域可得,利用三角函数的周期公式求得最小正周期.
(2)利用(1)中函数的解析式,把x=α代入,根据结果为
求得α值.
(2)利用(1)中函数的解析式,把x=α代入,根据结果为
| ||
| 2 |
解答:(1)解:f(x)=sinx•cosx+sin2x=
sin2x+
=
(sin2x-cos2x)+
=
sin(2x-
)+
,
因为-1≤sin(2x-
)≤1,
所以
≤
sin(2x-
)+
≤
,
即函数f(x)的值域为[
,
].
函数f(x)的最小正周期为T=
=π.
(2)解:由(Ⅰ)得f(α)=
sin(2α-
)+
=1,
所以sin(2α-
)=
,
因为0<α<π,所以-
<2α-
<
,
所以2α-
=
, 或2α-
=
,
所以α=
, 或α=
| 1 |
| 2 |
| 1-cos2x |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
因为-1≤sin(2x-
| π |
| 4 |
所以
1-
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
1+
| ||
| 2 |
即函数f(x)的值域为[
1-
| ||
| 2 |
1+
| ||
| 2 |
函数f(x)的最小正周期为T=
| 2π |
| 2 |
(2)解:由(Ⅰ)得f(α)=
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
所以sin(2α-
| π |
| 4 |
| ||
| 2 |
因为0<α<π,所以-
| π |
| 4 |
| π |
| 4 |
| 7π |
| 4 |
所以2α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
所以α=
| π |
| 4 |
| π |
| 2 |
点评:本题主要考查了正弦函数的值域和定义域,周期性及其求法等.考查了学生对三角函数基本公式的把握程度.
练习册系列答案
相关题目