题目内容
设F1,F2是双曲线
-
=1的两个焦点,点P在双曲线上,且∠F1PF2=60°,△F1PF2的面积______.
| x2 |
| 9 |
| y2 |
| 16 |
由题意
-
=1,可得 F2(5,0),F1 (-5,0),由余弦定理可得
100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1•PF2,
∴PF1•PF2=64.
S△F1PF2=
PF1•PF2sin60°=
×64×
=16
.
故答案为:16
.
| x2 |
| 9 |
| y2 |
| 16 |
100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1•PF2,
∴PF1•PF2=64.
S△F1PF2=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
故答案为:16
| 3 |
练习册系列答案
相关题目