题目内容
(2012•上高县模拟)已知数列{an}的前n项和Sn=-an-(
)n-1+2 (n为正整数).
(1)求数列{an}的通项
(2)若
=
,Tn=c1+c2+…+cn,求Tn.
| 1 |
| 2 |
(1)求数列{an}的通项
(2)若
| cn |
| n+1 |
| an |
| n |
分析:(1)由Sn=-an-(
)n-1+2,得Sn+1=-an+1-(
)n+2,两式相减可得an+1与an的递推关系,构造等差数列即可求解
(2)由(1)及
=
,可求cn,结合数列通项的特点,考虑利用错位相减求和方法即可求解
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)及
| cn |
| n+1 |
| an |
| n |
解答:解:(1)由Sn=-an-(
)n-1+2,得Sn+1=-an+1-(
)n+2,
两式相减,得an+1=
an+(
)n+1.
因为Sn=-an-(
)n-1+2,
令n=1,得a1=
.
对于an+1=
an+(
)n+1,
两端同时除以(
)n+1,得2n+1an+1=2nan+1,
即数列{2nan}是首项为21•a1=1,公差为1的等差数列,
故2nan=n,所以an=
.--------(6分)
(2)由(1)及
=
,得cn=(n+1)(
)n,
所以Tn=2×
+3×(
)2+4×(
)3+…+(n+1)(
)n,①
Tn=2×(
)2+3×(
)3+4×(
)4+…+(n+1)(
)n+1,②
由①-②,得
Tn=1+(
)2+(
)3+…+(
)n-(n+1)(
)n+1
=1+
-(n+1)(
)n+1
=
-
.
所以Tn=3-
.----------(12分)
| 1 |
| 2 |
| 1 |
| 2 |
两式相减,得an+1=
| 1 |
| 2 |
| 1 |
| 2 |
因为Sn=-an-(
| 1 |
| 2 |
令n=1,得a1=
| 1 |
| 2 |
对于an+1=
| 1 |
| 2 |
| 1 |
| 2 |
两端同时除以(
| 1 |
| 2 |
即数列{2nan}是首项为21•a1=1,公差为1的等差数列,
故2nan=n,所以an=
| n |
| 2n• |
(2)由(1)及
| cn |
| n+1 |
| an |
| n |
| 1 |
| 2 |
所以Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+
| ||||
1---
|
| 1 |
| 2 |
=
| 3 |
| 2 |
| n+3 |
| 2n+1 |
所以Tn=3-
| n+3 |
| 2n |
点评:本题主要考查了利用数列的递推公式构造等差数列求解通项,及数列的错位相减求和方法的应用,属于数列知识的综合应用
练习册系列答案
相关题目