题目内容

20.在△ABC中,a,b,c分别为角A,B,C所对的边,且ccosA=b,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形

分析 根据正弦定理结合题中的等式,化简得sinCcosA=sinB,再用sin(A+C)=sinB展开化简得到cosCsinA=0,结合三角形内角的范围即可得到C=$\frac{π}{2}$,即△ABC是直角三角形.

解答 解:∵在△ABC中,ccosA=b,
∴根据正弦定理,得sinCcosA=sinB,…①
∵A+C=π-B,
∴sin(A+C)=sinB,即sinB=sinCcosA+cosCsinA,
将①代入,可得cosCsinA=0,
∵A、C∈(0,π),可得sinA>0,
∴cosC=0,得C=$\frac{π}{2}$,即△ABC是直角三角形,
故选:C.

点评 本题给出三角形的边角关系,判断三角形的形状,着重考查了两角和的正弦公式和正弦定理等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网