题目内容

若函数f(x)=3ax-2a+1在区间[-1,1]上无实数根,则函数g(x)=(a-
1
5
)(x3-3x+4)的单调递减区间是(  )
A.(-2,2)B.(-1,1)C.(-∞,-1)D.(-∞,-1),(1,+∞)
函数f(x)=3ax-2a+1在区间[-1,1]上无实数根
则f(-1)•f(1)>0
即(-5a+1)•(a+1)>0
解得-1<a<
1
5

则a-
1
5
<0,
则函数g(x)=(a-
1
5
)(x3-3x+4)的单调性,与y=x3-3x+4的单调性相反
∵y′=3x2-3,则当x∈(-∞,-1)或x∈(1,+∞)时,y=x3-3x+4为增函数
则函数g(x)=(a-
1
5
)(x3-3x+4)的单调递减区间为(-∞,-1),(1,+∞)
故选D
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网