题目内容
设数列{an}的前n项和为Sn,满足Sn=an+1-2n+1+1,(n∈N*),且a1=1.
(Ⅰ)求a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设数列{bn}的前n项和为Tn,且bn=
,证明:对一切正整数n,都有:n-
<Tn<n-
.
(Ⅰ)求a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设数列{bn}的前n项和为Tn,且bn=
| an+1-1 |
| an+1+2 |
| 3 |
| 2 |
| 1 |
| 4 |
(Ⅰ)∵Sn=an+1-2n+1+1(n∈N*),且a1=1,
∴S1=a2-22+1,a1=a2-22+1,∴a2=4,
S2=a3-23+1,a1+a2=a3-23+1,∴a3=12;
(Ⅱ)由Sn=an+1-2n+1+1,(n∈N*)①,
得Sn-1=an-2n+1,(n∈N*,n≥2)②,
①-②得:an=an+1-an-2n,即an+1=2an+2n(n≥2),
检验知a1=1,a2=4满足an+1=2an+2n(n≥2).
∴an+1=2an+2n(n≥1).
变形可得
=
+1(n≥1).
∵
=
=1,
∴数列{
}是以1为首项,1为公差的等差数列.
∴
=1+(n-1)×1=n,
则an=n•2n-1(n≥1);
(Ⅲ)证明:由(Ⅱ)知an=n•2n-1(n≥1),代入bn=
得bn=
=1-
,
∵22n+1-(n+1)•2n-2=(2n+1-n-1-
)2n>0,
∴(n+1)•2n+2<22n+1
又∵2n+1<(n+1)•2n+2,
∴2n+1<(n+1)•2n+2<22n+1,
则
<
<
∴1-
<1-
<1-
∴1-
<bn<1-
∴n-(
+
+…+
)<Tn<n-(
+
+…+
)
即n-3×
<Tn<n-3×
∴n-
[1-(
)n]<Tn<n-
[1-(
)n]
∴n-
<Tn<n-
<n-
.
∴S1=a2-22+1,a1=a2-22+1,∴a2=4,
S2=a3-23+1,a1+a2=a3-23+1,∴a3=12;
(Ⅱ)由Sn=an+1-2n+1+1,(n∈N*)①,
得Sn-1=an-2n+1,(n∈N*,n≥2)②,
①-②得:an=an+1-an-2n,即an+1=2an+2n(n≥2),
检验知a1=1,a2=4满足an+1=2an+2n(n≥2).
∴an+1=2an+2n(n≥1).
变形可得
| an+1 |
| 2n |
| an |
| 2n-1 |
∵
| a1 |
| 21-1 |
| 1 |
| 20 |
∴数列{
| an |
| 2n-1 |
∴
| an |
| 2n-1 |
则an=n•2n-1(n≥1);
(Ⅲ)证明:由(Ⅱ)知an=n•2n-1(n≥1),代入bn=
| an+1-1 |
| an+1+2 |
得bn=
| (n+1)•2n-1 |
| (n+1)•2n+2 |
| 3 |
| (n+1)•2n+2 |
∵22n+1-(n+1)•2n-2=(2n+1-n-1-
| 1 |
| 2n-1 |
∴(n+1)•2n+2<22n+1
又∵2n+1<(n+1)•2n+2,
∴2n+1<(n+1)•2n+2<22n+1,
则
| 3 |
| 22n+1 |
| 3 |
| (n+1)•2n+2 |
| 3 |
| 2n+1 |
∴1-
| 3 |
| 2n+1 |
| 3 |
| (n+1)•2n+2 |
| 3 |
| 22n+1 |
∴1-
| 3 |
| 2n+1 |
| 3 |
| 22n+1 |
∴n-(
| 3 |
| 22 |
| 3 |
| 23 |
| 3 |
| 2n+1 |
| 3 |
| 23 |
| 3 |
| 25 |
| 3 |
| 22n+1 |
即n-3×
| ||||
1-
|
| ||||
1-
|
∴n-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴n-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
练习册系列答案
相关题目