题目内容

18.已知双曲线$\frac{x^2}{12}-\frac{y^2}{4}=1$的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是(  )
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$\left?{-\sqrt{3},\sqrt{3}}\right?$C.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$({-\sqrt{3},\sqrt{3}})$

分析 渐近线方程y=$±\frac{\sqrt{3}}{3}$x,当过焦点的两条直线与两条渐近线平行时,这两条直线与双曲线右支分别只有一个交点,由此能求出此直线的斜率的取值范围.

解答 解:渐近线方程y=$±\frac{\sqrt{3}}{3}$x,
当过焦点的两条直线与两条渐近线平行时,
这两条直线与双曲线右支分别只有一个交点
(因为双曲线正在与渐近线无限接近中),
那么在斜率是[$-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$]两条直线之间的所有直线中,
都与双曲线右支只有一个交点.
此直线的斜率的取值范围[$-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$].
故选:A.

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到直线与双曲线的相关知识,解题时要注意合理地进行等价转化.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网