题目内容
已知数列{an}为等差数列,且a5=11,a8=5,则an=__________.
-2n+21
解析:
要求an必须知道a1和d,根据已知的a5=11和a8=5可以列出两个关于a1与d的方程,解此方程组即可求解a1、d的值.
设数列{an}的公差为d,由等差数列的通项公式及已知得
解得![]()
∴an=19+(n-1)(-2),即an=-2n+21.
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |