题目内容
(2012•宿州三模)已知数列{an}满足:a1=1,an+an+1=
(n∈N+).
(Ⅰ)证明数列{a2n-1}为等差数列;
(Ⅱ)求数列{an}的通项公式及其前n项和Sn.
| 4n+1 | 2 |
(Ⅰ)证明数列{a2n-1}为等差数列;
(Ⅱ)求数列{an}的通项公式及其前n项和Sn.
分析:(Ⅰ)由an+an+1=
,可得an-1+an=
,联立可得an+1-an-1=2,结合a1=1,可得a1,a3,a5…a2n-1成等差数列.及可证
(Ⅱ)由(Ⅰ)可求n为奇数时an,当n为偶数时,an+an+1=an+n+1=
,即可求an,结合通项公式及等差数列的求和公式可求Sn
| 4n+1 |
| 2 |
| 4n-3 |
| 2 |
(Ⅱ)由(Ⅰ)可求n为奇数时an,当n为偶数时,an+an+1=an+n+1=
| 4n+1 |
| 2 |
解答:(Ⅰ)证明:由已知,当n≥2时,an+an+1=
①,an-1+an=
(n∈N+).②,
①-②可得an+1-an-1=2,又a1=1,所以a1,a3,a5…a2n-1成等差数列.
所以数列{a2n-1}是以1为首项,2为公差的等差数列…(4分)
(Ⅱ)由(Ⅰ)知n为奇数时an=n,则n为偶数时,an+an+1=an+n+1=
,
得an=n-
,
所以an=
.…(8分)
n为偶数时,Sn=
=
=
n(n≥3)为奇数时,Sn=Sn-1+an=
+n=
又
=1=S1
故Sn=
..…(12分)
| 4n+1 |
| 2 |
| 4n-3 |
| 2 |
①-②可得an+1-an-1=2,又a1=1,所以a1,a3,a5…a2n-1成等差数列.
所以数列{a2n-1}是以1为首项,2为公差的等差数列…(4分)
(Ⅱ)由(Ⅰ)知n为奇数时an=n,则n为偶数时,an+an+1=an+n+1=
| 4n+1 |
| 2 |
得an=n-
| 1 |
| 2 |
所以an=
|
n为偶数时,Sn=
| ||
| 2 |
n(
| ||||
| 4 |
| 2n2+n |
| 4 |
n(n≥3)为奇数时,Sn=Sn-1+an=
| 2(n-1)2+(n-1) |
| 4 |
| 2n2+n+1 |
| 4 |
又
| 2+1+1 |
| 4 |
故Sn=
|
点评:本题主要考查了等差数列的定义在等差数列的证明中的应用,等差数列的通项公式及求和公式的应用
练习册系列答案
相关题目