题目内容

已知函数f(x)=log
1
2
(sinx-cosx)

(1)求它的定义域和值域;
(2)求它的单调区间;
(3)判断它的奇偶性;
(4)判断它的周期性,如果是周期函数,求出它的最小正周期.
(1)由题意得sinx-cosx>0即
2
sin(x-
π
4
)>0
,从而得2kπ<x-
π
4
< 2kπ+π

∴函数的定义域为(2kπ+
π
4
,2kπ+
4
)
(k∈Z).
0<sin(x-
π
4
)≤1

故0<sinx-cosx≤
2
,所以函数f(x)的值域是[-
1
2
,+∞)

(2)∵(sinx-cosx)=
2
sin(x-
π
4
)

2kπ-
π
2
≤x-
π
4
≤2kπ+
π
2
解得2kπ-
π
4
≤x≤2kπ+
4

2kπ+
π
2
≤x-
π
4
≤2kπ+
2
解得2kπ+
4
≤x≤2kπ+
4

结合函数的定义域知
单调递增区间是[2kπ+
4
,2kπ+
4
)
(k∈Z),
单调递减区间是(2kπ+
π
4
,2kπ+
4
)
(k∈Z).
(3)因为f(x)定义域在数轴上对应的点不关于原点对称,
故f(x)是非奇非偶函数.
(4)∵f(x+2π)=log
1
2
[(sin(x+2π)-cos(x+2π)]
=f(x),
∴函数f(x)的最小正周期T=2π.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网