题目内容
(2012•眉山一模)公差d≠0的等差数列{an}的前n项和为Sn,若向量
=(ai,
)(i=1,2,3),t为实数,若
=t
,则t=( )
| OA1 |
| Si |
| i |
| A1A2 |
| A2A3 |
分析:
=
-
=(a2-a1,
-S1)=(d,
),
=
-
=(a3-a1,
-S1)=(2d,d),由
=t
,能求出t.
| A1A2 |
| OA2 |
| OA1 |
| S2 |
| 2 |
| d |
| 2 |
| A1A3 |
| OA3 |
| OA1 |
| S3 |
| 3 |
| A1A2 |
| A2A3 |
解答:解:∵
=(ai,
)(i=1,2,3),t为实数,
∴
=
-
=(a2-a1,
-S1)=(d,
),
=
-
=(a3-a1,
-S1)=(2d,d),
∵
=t
,
∴t=
,
故选D.
| OA1 |
| Si |
| i |
∴
| A1A2 |
| OA2 |
| OA1 |
| S2 |
| 2 |
| d |
| 2 |
| A1A3 |
| OA3 |
| OA1 |
| S3 |
| 3 |
∵
| A1A2 |
| A2A3 |
∴t=
| 1 |
| 2 |
故选D.
点评:本题考查向量与数列的综合应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目