题目内容

(2012•眉山一模)公差d≠0的等差数列{an}的前n项和为Sn,若向量
OA1
=(ai
Si
i
)(i=1,2,3),t
为实数,若
A1A2
=t
A2A3
,则t=(  )
分析:
A1A2
=
OA2
-
OA1
=(a2-a1
S2
2
-S1
)=(d,
d
2
),
A1A3
=
OA3
-
OA1
=(a3-a1
S3
3
-S1
)=(2d,d),由
A1A2
=t
A2A3
,能求出t.
解答:解:∵
OA1
=(ai
Si
i
)(i=1,2,3),t
为实数,
A1A2
=
OA2
-
OA1
=(a2-a1
S2
2
-S1
)=(d,
d
2
),
A1A3
=
OA3
-
OA1
=(a3-a1
S3
3
-S1
)=(2d,d),
A1A2
=t
A2A3

∴t=
1
2

故选D.
点评:本题考查向量与数列的综合应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网