题目内容
设抛物线
:
的焦点到准线的距离是
.
(Ⅰ)求此抛物线方程;
(Ⅱ)设点
在此抛物线上,点
为此抛物线的焦点,且
,若
,求直线
在
轴上截距的取值范围.
解:(Ⅰ)因为抛物线
:
的焦点到准线的距离
……(2分)
所以此抛物线方程为
…………(4分)
(Ⅱ)由题意,直线
的斜率存在.
,设直线
的方程为
…(5分)
由
消
,整理得,
…………(6分)
,设
,
则
,
…………(7分)
因为
,所以
,于是
……(8分)
由
,得
,又
,
消
得
,因为
,所以
,从而,
. …………(10分)
代入
得,
,令
,
因为
在
上递增,所以
,即
, …………(12分)
于是,
,或
…………(13分)
所以直线
在
轴上截距的取值范围为
. …………(14分)
练习册系列答案
相关题目