题目内容
若集合A={x|x2>1},集合B={ x| y=
},则A∩B=______.
| 8-2x-x2 |
A={x|x2>1}={x|x>1,x<-1},
由8-2x-x2≥0,解得-4≤x≤2,故B={x|y=
}={x|-4≤x≤2}
∴A∩B=[-4,-1)∪(1,2]
故答案为:[-4,-1)∪(1,2].
由8-2x-x2≥0,解得-4≤x≤2,故B={x|y=
| 8-2x-x2? |
∴A∩B=[-4,-1)∪(1,2]
故答案为:[-4,-1)∪(1,2].
练习册系列答案
相关题目