题目内容
如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)写出a1,a2,a3;
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式;
(3)设bn=
+
+
+…+
,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
>bn恒成立,求实数t的取值范围.
(1)写出a1,a2,a3;
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式;
(3)设bn=
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| an+3 |
| 1 |
| a2n |
| 1 |
| 6 |
解(1)a1=2,a2=6,a3=12;
(2)依题意,得xn=
,yn=
•
,由此及yn2=3xn得(
•
)2=
(an-1+an),即(an-an-1)2=2(an-1+an).
由(1)可猜想:an=n(n+1)n∈N*
下面用数学归纳法予以证明:
(1)当n=1时,命题显然成立;
(2)假定当n=k时命题成立,即有an=k(k+1),则当n=k+1时,由归纳假设及(ak+1-ak)2=2(ak+ak+1)得[ak+1-k(k+1)]2=2[k(k+1)+ak+1],即(ak+1)2-2(k2+k+1)ak+1+[k(k-1)]•[(k+1)(k+2)]=0,
解之得ak+1=(k+1)(k+2)(ak+1=k(k-1)<ak不合题意,舍去),
即当n=k+1时,命题成立.
由(1)、(2)知:命题成立.
(3)bn=
+
+
++
=
+
++
=
-
=
=
.
令f(x)=2x+
(x≥1),则f′(x)=2-
≥2-1>0,所以f(x)在[1,+∞)上是增函数,
故当x=1时,f(x)取得最小值3,即当n=1时,(bn)max=
.t2-2mt+
>bn((?n∈N,?m∈[-1,1])?t2-2mt+
>(bn)max=
,即t2-2mt>0(?m∈[-1,1])?
解之得,实数t的取值范围为(-∞,-2)∪(2,+∞).
(2)依题意,得xn=
| an-1+an |
| 2 |
| 3 |
| an-an-1 |
| 2 |
| 3 |
| an-an-1 |
| 2 |
| 3 |
| 2 |
由(1)可猜想:an=n(n+1)n∈N*
下面用数学归纳法予以证明:
(1)当n=1时,命题显然成立;
(2)假定当n=k时命题成立,即有an=k(k+1),则当n=k+1时,由归纳假设及(ak+1-ak)2=2(ak+ak+1)得[ak+1-k(k+1)]2=2[k(k+1)+ak+1],即(ak+1)2-2(k2+k+1)ak+1+[k(k-1)]•[(k+1)(k+2)]=0,
解之得ak+1=(k+1)(k+2)(ak+1=k(k-1)<ak不合题意,舍去),
即当n=k+1时,命题成立.
由(1)、(2)知:命题成立.
(3)bn=
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| an+3 |
| 1 |
| a2n |
| 1 |
| (n+1)(n+2) |
| 1 |
| (n+2)(n+3) |
| 1 |
| 2n(2n+1) |
| 1 |
| n+1 |
| 1 |
| 2n+1 |
| n |
| 2n2+3n+1 |
| 1 | ||
(2n+
|
令f(x)=2x+
| 1 |
| x |
| 1 |
| x2 |
故当x=1时,f(x)取得最小值3,即当n=1时,(bn)max=
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 6 |
|
解之得,实数t的取值范围为(-∞,-2)∪(2,+∞).
练习册系列答案
相关题目