题目内容

已知函数f(x)=
3
sin2x+sinxcosx-
3
2
(x∈R).
(Ⅰ)求f(
π
4
)
的值;
(Ⅱ)若x∈(0,
π
2
)
,求f(x)的最大值;
(Ⅲ)在△ABC中,若A<B,f(A)=f(B)=
1
2
,求
BC
AB
的值.
(Ⅰ)f(
π
4
)=
3
sin2
π
4
+sin
π
4
cos
π
4
-
3
2
=
1
2
.(4分)
(Ⅱ)f(x)=
3
(1-cos2x)
2
+
1
2
sin2x-
3
2
=
1
2
sin2x-
3
2
cos2x
=sin(2x-
π
3
)
.(6分)
0<x<
π
2
,∴-
π
3
<2x-
π
3
3
.∴当2x-
π
3
=
π
2
时,即x=
12
时,f(x)的最大值为1.(8分)
(Ⅲ)∵f(x)=sin(2x-
π
3
)

若x是三角形的内角,则0<x<π,
-
π
3
<2x-
π
3
3

f(x)=
1
2
,得sin(2x-
π
3
)=
1
2

2x-
π
3
=
π
6
2x-
π
3
=
6

解得x=
π
4
x=
12
.(10分)
由已知,A,B是△ABC的内角,A<B且f(A)=f(B)=
1
2

A=
π
4
B=
12

C=π-A-B=
π
6
.(11分)
又由正弦定理,得
BC
AB
=
sinA
sinC
=
sin
π
4
sin
π
6
=
2
2
1
2
=
2
.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网