题目内容
已知函数f(x)=
sin2x+sinxcosx-
(x∈R).
(Ⅰ)求f(
)的值;
(Ⅱ)若x∈(0,
),求f(x)的最大值;
(Ⅲ)在△ABC中,若A<B,f(A)=f(B)=
,求
的值.
| 3 |
| ||
| 2 |
(Ⅰ)求f(
| π |
| 4 |
(Ⅱ)若x∈(0,
| π |
| 2 |
(Ⅲ)在△ABC中,若A<B,f(A)=f(B)=
| 1 |
| 2 |
| BC |
| AB |
(Ⅰ)f(
)=
sin2
+sin
cos
-
=
.(4分)
(Ⅱ)f(x)=
+
sin2x-
=
sin2x-
cos2x=sin(2x-
).(6分)
∵0<x<
,∴-
<2x-
<
.∴当2x-
=
时,即x=
时,f(x)的最大值为1.(8分)
(Ⅲ)∵f(x)=sin(2x-
),
若x是三角形的内角,则0<x<π,
∴-
<2x-
<
.
令f(x)=
,得sin(2x-
)=
,
∴2x-
=
或2x-
=
,
解得x=
或x=
.(10分)
由已知,A,B是△ABC的内角,A<B且f(A)=f(B)=
,
∴A=
,B=
,
∴C=π-A-B=
.(11分)
又由正弦定理,得
=
=
=
=
.(13分)
| π |
| 4 |
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
(Ⅱ)f(x)=
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
∵0<x<
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 12 |
(Ⅲ)∵f(x)=sin(2x-
| π |
| 3 |
若x是三角形的内角,则0<x<π,
∴-
| π |
| 3 |
| π |
| 3 |
| 5π |
| 3 |
令f(x)=
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
∴2x-
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
解得x=
| π |
| 4 |
| 7π |
| 12 |
由已知,A,B是△ABC的内角,A<B且f(A)=f(B)=
| 1 |
| 2 |
∴A=
| π |
| 4 |
| 7π |
| 12 |
∴C=π-A-B=
| π |
| 6 |
又由正弦定理,得
| BC |
| AB |
| sinA |
| sinC |
sin
| ||
sin
|
| ||||
|
| 2 |
练习册系列答案
相关题目