题目内容
已知函数F(x)=
(x≠
).
(I)求F(
)+F(
)+…+F(
);
(II)已知数列{an}满足a1=2,an+1=F(an),证明{
}为等差数列(n∈N*),并求数列{an}的通项公式;
(III)已知若b>a>0,c>0,则必有
>
,利用此结论,求证:a1a2…an>
(n∈N*).
| 3x-2 |
| 2x-1 |
| 1 |
| 2 |
(I)求F(
| 1 |
| 2011 |
| 2 |
| 2011 |
| 2010 |
| 2011 |
(II)已知数列{an}满足a1=2,an+1=F(an),证明{
| 1 |
| an-1 |
(III)已知若b>a>0,c>0,则必有
| b |
| a |
| b+c |
| a+c |
| 2n+1 |
分析:(I)由F(x)=
(x≠
),得F(x)+F(1-x)=3,设S=F(
)+F(
)+…+F(
),利用倒序相加法能求出F(
)+F(
)+…+F(
)的值.
(II)将等式an+1=F(an)的两边同时减去1,得an+1-1=
-1=
,由此能证明证明{
}为等差数列(n∈N*),并求数列{an}的通项公式.
(III)由
>
,得an=
>
,由此能够证明a1a2…an>
(n∈N*).
| 3x-2 |
| 2x-1 |
| 1 |
| 2 |
| 1 |
| 2011 |
| 2 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2011 |
| 2 |
| 2011 |
| 2010 |
| 2011 |
(II)将等式an+1=F(an)的两边同时减去1,得an+1-1=
| 3an-2 |
| 2an-1 |
| an-1 |
| 2an-1 |
| 1 |
| an-1 |
(III)由
| 2n |
| 2n-1 |
| 2n+1 |
| 2n |
| 2n |
| 2n-1 |
|
| 2n+1 |
解答:解:(I)∵F(x)=
(x≠
),
∴F(x)+F(1-x)=
+
=
+
=
=3,
设S=F(
)+F(
)+…+F(
),①
则S=F(
)+F(
)+…+F(
),②
①+②,得2S=[F(
)+F(
)]+[F(
)+F(
)]+…+[F(
)+F(
)]=3×2010=6030,
∴S=3015,
∴F(
)+F(
)+…+F(
)=3015.
(II)将等式an+1=F(an)的两边同时减去1,
得an+1-1=
-1=
,
∴
=
=
=2+
,
即
-
=2,又
=
=1,
∴数列{
}是以2为公差,1为首项的等差数列,
所以
=1+(n-1)×2=2n-1,
所以an=1+
=
.
(III)∵
>
,
∴(
)2>
•
=
,
∴an=
>
,
∴a1a2…an>
=
(n∈N*).
| 3x-2 |
| 2x-1 |
| 1 |
| 2 |
∴F(x)+F(1-x)=
| 3x-2 |
| 2x-1 |
| 3(1-x)-2 |
| 2(1-x)-1 |
=
| 3x-2 |
| 2x-1 |
| 1-3x |
| 1-2x |
| 6x-3 |
| 2x-1 |
设S=F(
| 1 |
| 2011 |
| 2 |
| 2011 |
| 2010 |
| 2011 |
则S=F(
| 2010 |
| 2011 |
| 2009 |
| 2011 |
| 1 |
| 2011 |
①+②,得2S=[F(
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 2 |
| 2011 |
| 2009 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2011 |
∴S=3015,
∴F(
| 1 |
| 2011 |
| 2 |
| 2011 |
| 2010 |
| 2011 |
(II)将等式an+1=F(an)的两边同时减去1,
得an+1-1=
| 3an-2 |
| 2an-1 |
| an-1 |
| 2an-1 |
∴
| 1 |
| an+1-1 |
| 2an-1 |
| an-1 |
| 2(an-1)+1 |
| an-1 |
| 1 |
| an-1 |
即
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 |
| a1-1 |
| 1 |
| 2-1 |
∴数列{
| 1 |
| an-1 |
所以
| 1 |
| an-1 |
所以an=1+
| 1 |
| 2n-1 |
| 2n |
| 2n-1 |
(III)∵
| 2n |
| 2n-1 |
| 2n+1 |
| 2n |
∴(
| 2n |
| 2n-1 |
| 2n+1 |
| 2n |
| 2n |
| 2n-1 |
| 2n+1 |
| 2n-1 |
∴an=
| 2n |
| 2n-1 |
|
∴a1a2…an>
|
| 2n+1 |
点评:本题考查数列的通项公式的求法,考查等差数列的证明,解题时要认真审题,仔细解答,注意构造法和放缩法的合理运用.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |