题目内容

(2012•扬州模拟)已知函数f(x)=
32
x+ln(x-1)
,设数列{an}同时满足下列两个条件:①an>0(n∈N*);②an+1=f'(an+1).
(Ⅰ)试用an表示an+1
(Ⅱ)记bn=a2n(n∈N*),若数列{bn}是递减数列,求a1的取值范围.
分析:(Ⅰ)求导函数,利用an+1=f'(an+1),可用an表示an+1
(Ⅱ)先通过特殊性,猜想0<a1<2,再用数学归纳法进行证明.
解答:解:(Ⅰ)求导函数f′(x)=
3
2
+
1
x-1

∵an+1=f'(an+1),∴an+1=
3
2
+
1
an

(Ⅱ)a3=
3
2
+
1
a2
a4=
3
2
+
1
a3
=
3
2
+
1
3
2
+
1
a2
=
3
2
+
2a2
3a2+2

令a4<a2,得2
a
2
2
-3a2-2>0
,∴(2a2+1)(a2-2)>0,
∵a2>0,∴a2>2,则
3
2
+
1
a1
>2
,得0<a1<2.
以下证明:当0<a1<2时,a2n+2<a2n,且a2n>2.
①当n=1时,0<a1<2,则a2=
3
2
+
1
a1
3
2
+
1
2
=2
a4-a2=
3
2
+
1
a3
-a2=
3
2
+
1
3
2
+
1
a2
-a2=
13a2+6
2(3a2+2)
-a2=
-6
a
2
2
+9a2+6
2(3a2+2)

=-
3(2a2+1)(a2-2)
2(3a2+2)
<0
,∴a4<a2
②假设n=k(k∈N*)时命题成立,即a2k+2<a2k,且a2k>2,
当n=k+1时,a2k+2=
3
2
+
1
a2k
3
2
+
1
2
=2
a2k+2=
3
2
+
1
a2k+1
=
3
2
+
1
3
2
+
1
a2k
>2
a2k+4-a2k+2=
13a2k+2+6
2(3a2k+2+2)
-a2k+2=-
3(a2k+2+1)(a2k+2-2)
2(3a2k+2+2)
<0

∴a2k+4<a2k+2,即n=k+1时命题成立,
综合①②,对于任意n∈N*,a2n+2<a2n,且a2n>2,从而数列{bn}是递减数列.
∴a1的取值范围为(0,2).
说明:数学归纳法第②步也可用下面方法证明:a2k+4-a2k+2=
13a2k+2+6
2(3a2k+2+2)
-
13a2k+6
2(3a2k+2)
=
4(a2k+2-a2k)
(3a2k+2+2)(3a2k+2)
<0
点评:本题考查数列递推式,考查求参数的范围,解题的关键是先猜后证,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网