题目内容
(2012•扬州模拟)已知函数f(x)=
x+ln(x-1),设数列{an}同时满足下列两个条件:①an>0(n∈N*);②an+1=f'(an+1).
(Ⅰ)试用an表示an+1;
(Ⅱ)记bn=a2n(n∈N*),若数列{bn}是递减数列,求a1的取值范围.
| 3 | 2 |
(Ⅰ)试用an表示an+1;
(Ⅱ)记bn=a2n(n∈N*),若数列{bn}是递减数列,求a1的取值范围.
分析:(Ⅰ)求导函数,利用an+1=f'(an+1),可用an表示an+1;
(Ⅱ)先通过特殊性,猜想0<a1<2,再用数学归纳法进行证明.
(Ⅱ)先通过特殊性,猜想0<a1<2,再用数学归纳法进行证明.
解答:解:(Ⅰ)求导函数f′(x)=
+
,
∵an+1=f'(an+1),∴an+1=
+
.
(Ⅱ)a3=
+
,a4=
+
=
+
=
+
,
令a4<a2,得2
-3a2-2>0,∴(2a2+1)(a2-2)>0,
∵a2>0,∴a2>2,则
+
>2,得0<a1<2.
以下证明:当0<a1<2时,a2n+2<a2n,且a2n>2.
①当n=1时,0<a1<2,则a2=
+
>
+
=2,a4-a2=
+
-a2=
+
-a2=
-a2=
=-
<0,∴a4<a2.
②假设n=k(k∈N*)时命题成立,即a2k+2<a2k,且a2k>2,
当n=k+1时,a2k+2=
+
>
+
=2,a2k+2=
+
=
+
>2a2k+4-a2k+2=
-a2k+2=-
<0
∴a2k+4<a2k+2,即n=k+1时命题成立,
综合①②,对于任意n∈N*,a2n+2<a2n,且a2n>2,从而数列{bn}是递减数列.
∴a1的取值范围为(0,2).
说明:数学归纳法第②步也可用下面方法证明:a2k+4-a2k+2=
-
=
<0
| 3 |
| 2 |
| 1 |
| x-1 |
∵an+1=f'(an+1),∴an+1=
| 3 |
| 2 |
| 1 |
| an |
(Ⅱ)a3=
| 3 |
| 2 |
| 1 |
| a2 |
| 3 |
| 2 |
| 1 |
| a3 |
| 3 |
| 2 |
| 1 | ||||
|
| 3 |
| 2 |
| 2a2 |
| 3a2+2 |
令a4<a2,得2
| a | 2 2 |
∵a2>0,∴a2>2,则
| 3 |
| 2 |
| 1 |
| a1 |
以下证明:当0<a1<2时,a2n+2<a2n,且a2n>2.
①当n=1时,0<a1<2,则a2=
| 3 |
| 2 |
| 1 |
| a1 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| a3 |
| 3 |
| 2 |
| 1 | ||||
|
| 13a2+6 |
| 2(3a2+2) |
-6
| ||
| 2(3a2+2) |
=-
| 3(2a2+1)(a2-2) |
| 2(3a2+2) |
②假设n=k(k∈N*)时命题成立,即a2k+2<a2k,且a2k>2,
当n=k+1时,a2k+2=
| 3 |
| 2 |
| 1 |
| a2k |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| a2k+1 |
| 3 |
| 2 |
| 1 | ||||
|
| 13a2k+2+6 |
| 2(3a2k+2+2) |
| 3(a2k+2+1)(a2k+2-2) |
| 2(3a2k+2+2) |
∴a2k+4<a2k+2,即n=k+1时命题成立,
综合①②,对于任意n∈N*,a2n+2<a2n,且a2n>2,从而数列{bn}是递减数列.
∴a1的取值范围为(0,2).
说明:数学归纳法第②步也可用下面方法证明:a2k+4-a2k+2=
| 13a2k+2+6 |
| 2(3a2k+2+2) |
| 13a2k+6 |
| 2(3a2k+2) |
| 4(a2k+2-a2k) |
| (3a2k+2+2)(3a2k+2) |
点评:本题考查数列递推式,考查求参数的范围,解题的关键是先猜后证,属于中档题.
练习册系列答案
相关题目