题目内容

17.若空间中n个不同的点两两距离都相等,则正整数n的取值(  )
A.至多等于3B.至多等于4C.等于5D.大于5

分析 先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.

解答 解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;
4个点两两距离相等,三个点在圆上,一个点是圆心,圆上的点到圆心的距离都相等,则成立;
n大于4,也不成立;
在空间中,4个点两两距离相等,构成一个正四面体,成立;
若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,
第五个点,与它们距离相等,必为正四面体的外接球的球心,
且球的半径等于边长,即有球心与正四面体的底面的中心重合,故不成立;
同理n>5,不成立.
故选:B.

点评 本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网