题目内容
已知数列{an}满足:a1=1, an+1=
|
(1)求a2,a3;
(2)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;
(3)已知cn=log
| 1 |
| 2 |
| 1 |
| c1c2 |
| 1 |
| c2c3 |
| 1 |
| cn-1cn |
分析:(1)由数列{an}的递推关系直接可求;(2)利用a1=1,an+1=
,可得
=
,所以数列{bn}是公比为
,首项为-
的等比数列,进一步可求其通项公式;
(3)易得cn=n,再利用裂项求和法求和,进而证得结论.
|
| bn+1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)易得cn=n,再利用裂项求和法求和,进而证得结论.
解答:解:(1)由数列{an}的递推关系易知:a2=
,a3=-
.(2分)
(2)bn+1=a2n+2-2=
a2n+1+(2n+1)-2=
a2n+1+(2n-1)=
(a2n-4n)+(2n-1)
=
a2n-1=
(a2n-2)=
bn.(6分)
又b1=a2-2=-
,∴bn≠0, ∴
=
,
即数列{bn}是公比为
,首项为-
的等比数列,bn=-
(
)n-1=-(
)n.(7分)
(3)由(2)有cn=log
|bn|=log
(
)n=n.(8分)
∵
=
-
.(10分)
∴
+
++
=1-
+
-
++
-
=1-
<1.(14分)
| 3 |
| 2 |
| 5 |
| 2 |
(2)bn+1=a2n+2-2=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
又b1=a2-2=-
| 1 |
| 2 |
| bn+1 |
| bn |
| 1 |
| 2 |
即数列{bn}是公比为
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)由(2)有cn=log
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| c1c2 |
| 1 |
| c2c3 |
| 1 |
| cn-1cn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
点评:本题考查了数列的递推公式的运用、利用定义法证明等比数列:要证数列{bn}为等比数列?
=q≠0.
| bn |
| bn-1 |
练习册系列答案
相关题目