题目内容

已知正项数列{an}和{bn}中,a1=a(0<a<1),b1=1-a.当n≥2时,an=an-1bn,bn=
bn-a1-a2n-1

(1)证明:对任意n∈N*,有an+bn=1;
(2)求数列{an}的通项公式.
分析:(1)直接利用数学归纳法的证明方法,验证n=1时命题成立,然后假设n=k时命题成立,证明n=k+1时命题也成立即可.
(2)利用已知和(1)的结果,化简an+1=anbn+1推出
1
an_+1
-
1
an
=1.然后说明数列{
1
an
}是公差为1的等差数列,其首项为
1
a1
=
1
a
,求出数列{an}的通项公式.
解答:解:(1)证明:用数学归纳法证明.
①当n=1时,a1+b1=a+(1-a)=1,命题成立;
②假设n=k(k≥1且k∈N*)时命题成立,即ak+bk=1,则当n=k+1时,ak+1+bk+1=akbk+1+bk+1=(ak+1)•bk+1=(ak+1)•
bk
1-
a
2
k
=
bk
1-ak
=
bk
bk
=1.
∴当n=k+1时,命题也成立.
由①、②可知,an+bn=1对n∈N*恒成立.
(2)∵an+1=anbn+1=
anbn
1-
a
2
n
=
an(1-an)
1-
a
2
n
=
an
1+an

1
an+1
=
1+an
an
=
1
an
+1,
1
an+1
-
1
an
=1.
数列{
1
an
}是公差为1的等差数列,其首项为
1
a1
=
1
a

1
an
=
1
a
+(n-1)×1,从而an=
a
1+(n-1)a
点评:本题是基础题,考查数学归纳法的证明方法,注意n=k+1的证明过程,增加了2k个区域,这是证明的关键所在,两个步骤缺一不可.注意(2)的裂项法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网