题目内容
已知数列{an}的通项公式an=
,求它的前n项和.
| (2n)2 |
| (2n-1)(2n+1) |
∵an=
+
,
∴Sn=(1+
)+(
+
)+…+(
+
)+(
+
)
=1+(
+
)+(
+
)+…+(
+
)+
=n+
=
.
| n |
| 2n-1 |
| n |
| 2n+1 |
∴Sn=(1+
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 5 |
| n-1 |
| 2n-3 |
| n-1 |
| 2n-1 |
| n |
| 2n-1 |
| n |
| 2n+1 |
=1+(
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 5 |
| 3 |
| 5 |
| n-1 |
| 2n-1 |
| n |
| 2n-1 |
| n |
| 2n+1 |
| n |
| 2n+1 |
=
| 2n(n+1) |
| 2n+1 |
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|