题目内容
已知函数f(x)=sin(2x+
)+sin(2x-
)+2cos2x.
(1)求f(x)的最大值及最小正周期;
(2)求使f(x)≥2的x的取值范围.
| π |
| 6 |
| π |
| 6 |
(1)求f(x)的最大值及最小正周期;
(2)求使f(x)≥2的x的取值范围.
分析:(1)利用两角和差的正弦公式、倍角公式、正弦函数的单调性、周期性即可得出.
(2)利用三角函数的单调性即可得出.
(2)利用三角函数的单调性即可得出.
解答:解:(1)∵f(x)=sin(2x+
)+sin(2x-
)+2cos2x
=sin2xcos
+cos2xsin
+sin2xcos
-cos2xsin
+2cos2x+1
=
sin2x+cos2x+1
=2sin(2x+
)+1.
∴f(x)max=2+1=3.T=
=
=π.
(2)∵f(x)≥2,∴2sin(2x+
)+1≥2.
∴sin(2x+
)≥
.
∴2kπ+
≤2x+
≤2kπ+
π,
∴kπ≤x≤kπ+
(k∈Z),
∴f(x)≥2的x的取值范围是{x|kπ≤x≤kπ+
,k∈Z}.
| π |
| 6 |
| π |
| 6 |
=sin2xcos
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 3 |
=2sin(2x+
| π |
| 6 |
∴f(x)max=2+1=3.T=
| 2π |
| |ω| |
| 2π |
| 2 |
(2)∵f(x)≥2,∴2sin(2x+
| π |
| 6 |
∴sin(2x+
| π |
| 6 |
| 1 |
| 2 |
∴2kπ+
| π |
| 6 |
| π |
| 6 |
| 5 |
| 6 |
∴kπ≤x≤kπ+
| π |
| 3 |
∴f(x)≥2的x的取值范围是{x|kπ≤x≤kπ+
| π |
| 3 |
点评:熟练掌握两角和差的正弦公式、倍角公式、三角函数的单调性、周期性等是解题的关键.
练习册系列答案
相关题目