题目内容
A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
,x∈[1,2],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
| 3 | 1+x |
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.
(Ⅰ)对任意x∈[1,2],φ(2x)=
,
∵
≤φ(2x)≤
,且1<
<
<2,
∴φ(2x)∈(1,2)满足(1)的条件;
对任意的x1,x2∈[1,2],|φ(2x1)-φ(2x2)|
=|x1-x2|•
,
∵3<
+
+
,
所以0<
<
,
令
=L,则0<L<1,
可得|φ(2x1)-φ(2x2)|≤L|x1-x2|,满足(2)的条件
所以φ(x)∈A成立.…(8分)
(Ⅱ)反证法:
设存在两个x0、x0/∈(1,2)且x0≠x0/,使得x0=φ(2x0),x0/=φ(2x0/),则
由(I)的结论,得|φ(2x0)-φ(2x0/)|≤L|x1-x2|,
得|x0-x0/|≤L|x1-x2|,所以L≥1,与定义0<L<1矛盾,故假设不成立,
可得不存在两个x0、x0/∈(1,2)且x0≠x0/,使得x0=φ(2x0),x0/=φ(2x0/),
因此如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.…(13分)
| 3 | 1+2x |
∵
| 3 | 3 |
| 3 | 5 |
| 3 | 3 |
| 3 | 5 |
∴φ(2x)∈(1,2)满足(1)的条件;
对任意的x1,x2∈[1,2],|φ(2x1)-φ(2x2)|
=|x1-x2|•
| 2 | |||||||||
|
∵3<
| 3 | (1+2x1)2 |
| 3 | (1+2x1)(1+2x2) |
| 3 | (1+2x2)2 |
所以0<
| 2 | |||||||||
|
| 2 |
| 3 |
令
| 2 | |||||||||
|
可得|φ(2x1)-φ(2x2)|≤L|x1-x2|,满足(2)的条件
所以φ(x)∈A成立.…(8分)
(Ⅱ)反证法:
设存在两个x0、x0/∈(1,2)且x0≠x0/,使得x0=φ(2x0),x0/=φ(2x0/),则
由(I)的结论,得|φ(2x0)-φ(2x0/)|≤L|x1-x2|,
得|x0-x0/|≤L|x1-x2|,所以L≥1,与定义0<L<1矛盾,故假设不成立,
可得不存在两个x0、x0/∈(1,2)且x0≠x0/,使得x0=φ(2x0),x0/=φ(2x0/),
因此如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.…(13分)
练习册系列答案
相关题目