题目内容
已知A,B,C,D是平面内不共线的四点,若存在正实数λ1,λ2,使得
,则∠ADB,∠BDC,∠ADC
- A.都是锐角
- B.至多有两个钝角
- C.恰有两个钝角
- D.至少有两个钝角
D
分析:由条件可得
,两边同时乘以
可得,-
=
<0,故∠ADB,∠ADC中至少有一个钝角.同理可得∠ADB和∠BDC中至少有一个钝角,∠BDC和∠ADC中至少有一个钝角.从而得到∠ADB,∠BDC,∠ADC中至少有两个钝角.
解答:∵
,∴
,两边同时乘以
可得
-
=
<0,又 正实数λ1,λ2 ,∴∠ADB,∠ADC中至少有一个钝角.
同理可得∠ADB,∠BDC中至少有一个钝角,∠BDC,∠ADC中至少有一个钝角.
综上可得,∠ADB,∠BDC,∠ADC中至少有两个钝角.
故选D.
点评:此题是个中档题,主要考查数量积表示两个向量的夹角,以及数量积的定义式,同时考查学生灵活应用知识分析解决问题的能力和计算能力.
分析:由条件可得
解答:∵
-
同理可得∠ADB,∠BDC中至少有一个钝角,∠BDC,∠ADC中至少有一个钝角.
综上可得,∠ADB,∠BDC,∠ADC中至少有两个钝角.
故选D.
点评:此题是个中档题,主要考查数量积表示两个向量的夹角,以及数量积的定义式,同时考查学生灵活应用知识分析解决问题的能力和计算能力.
练习册系列答案
相关题目