题目内容

已知a、b、c、d∈R+,且满足下列两个条件:
①a、b分别为回归直线方程y=bx+a的常数项和一次项系数,其中x与y之间有如下对应数据:
x 3 4 5 6
y 2.5 3 4 4.5
1
c
+
1
d
=
1
20
;则ac+bd的最小值是
21+14
2
21+14
2
分析:利用线性回归方程计算公式即可得出a,b,再利用基本不等式即可得出.
解答:解:由①可得:
.
x
=
3+4+5+6
4
=4.5,
.
y
=
2.5+3+4+4.5
4
=3.5.
∴b=
3×2.5+4×3+5×4+6×4.5-4×4.5×3.5
32+42+52+62-4×4.52
=
7
10

∴a=
.
y
-b
.
x
=3.5-0.7×4.5=0.35=
7
20

∵c>0,d>0.
∴ac+bd=
7
20
c+
7
10
d
=
7
20
(c+2d)×20(
1
c
+
1
d
)
=7(3+
2d
c
+
c
d
)
≥7(3+2
2d
c
c
d
)
=21+14
2
,当且仅当c=
2
d
=20(1+
2
)
时取等号.
故答案为21+14
2
点评:本题考查了线性回归方程、基本不等式的性质等基础知识与基本方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网