题目内容

已知a≤0,求函数f(x)=ax3+(3-a)x2-6x+1的单调递增区间.

解:f′(x)=3ax2+(6-3a)x-6=(3ax+6)(x-1).?                                                      ?

(1)当a=0时,f′(x)>0x>1,?

∴递增区间是(1,+∞);                                                                                       ?

(2)当a<0时,f′(x)>0(x+)(x-1)<0.?

①-2<a<0时,递增区间是(1,-);                                                                           ?

a=-2时,无递增区间;                                                                                     ?

a<-2时,递增区间是(-,1).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网