题目内容
已知数列{an}的前n项和Sn=n2+2n
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
| 1 | anan+1 |
分析:(Ⅰ)当n=1时,可求得a1=3;当n≥2时,an=Sn-Sn-1=2n+1,对a1=3仍成立,于是可得数列{an}的通项公式;
(Ⅱ)利用裂项法可求得
=
(
-
),于是可求得数列{
}的前n项和Tn.
(Ⅱ)利用裂项法可求得
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| anan+1 |
解答:解:(Ⅰ)当n=1时,a1=S1=3;
当n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
对a1=3仍成立,
∴数列{an}的通项公式:an=2n+1;
(Ⅱ)由(Ⅰ)知
=
=
(
-
)
∴Tn=
[(
-
)+(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
.
当n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
对a1=3仍成立,
∴数列{an}的通项公式:an=2n+1;
(Ⅱ)由(Ⅰ)知
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
=
| n |
| 6n+9 |
点评:本题考查数列的求和,着重考查递推关系的应用,突出考查裂项法求和,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |