题目内容

已知函数fx)=(x≠0).

(1)若f(x)=xx∈R,则称xf(x)的实不动点.求f(x)的实不动点;

(2)在数列{an}中,a1=2,an+1=f(an),求数列{an}的通项公式.

解:(1)∵f(x)=x,∴

∴(x+1)4+(x-1)4=x·(x+1)4-x·(x-1)4.

∴(x+1)(x-1)[- (x+1)3+(x-1)3]=0.

∴(x+1)(x-1)(3x2+1)=0.

x=1或x=-1,                                                                                                        

f(x)的实不动点为x=1或x=-1.

(2)∵an+1=f(an),∴

an·(an+1)4-an·(an-1)4=(an+1)4+(an-1)4.

∴(an+1)4·(an+1-1)=(an-1)4(an+1+1).

=()4.                                                                                    

bn=,则上式为bn+1=bn4.

a1=2,∴b1==3, b2=b14=34,b3=b24=316,b4=b34=364…,猜想bn证明如下:

①     当n=1时,有b1=3,符合.

②     假设当 n=k时,命题成立,即bk=.

则当n=k时,bk1bk4=()4=3也成立.

综合①②知bn=成立.∴.∴


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网