题目内容
已知数列{an}的前n项和为Sn,a1=3且an+1=2Sn+3,数列{bn}满足bn+1=
bn+
,且b1=
,
(1)求数列{an}的通项公式;
(2)求证:数列{bn-
}是等比数列,并求{bn}的通项公式.
| 1 |
| 2 |
| 1 |
| 4 |
| 7 |
| 2 |
(1)求数列{an}的通项公式;
(2)求证:数列{bn-
| 1 |
| 2 |
分析:(1)先根据前n项和与通项之间的关系以及an+1=2Sn+3,整理得到sn+1+
=3(sn+
);进而得到{sn+
}是首项为
公比为3的等比数列;求出Sn,进而得到数列{an}的通项公式;
(2)先对条件bn+1=
bn+
整理得到bn+1-
=
(bn-
);再结合首项不为0即可得到数列{bn-
}是等比数列,求出其通项,进而得到{bn}的通项公式.
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| 2 |
(2)先对条件bn+1=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)∵a1=3且an+1=2Sn+3,
∴sn+1-sn=2sn+3⇒sn+1=3sn+3⇒sn+1+
=3(sn+
);
∵s1+
=a1+
=
≠0,
∴
=3.
即{sn+
}是首项为
公比为3的等比数列;
∴sn+
=
×3n-1=
×3n+1⇒sn=
×3n+1 -
;
∴an=2sn-1+3=3n.
(2)∵数列{bn}满足bn+1=
bn+
,且b1=
,
∴b1-
=3≠0;
且bn+1-
=
(bn-
).
∴
=
.
∴数列{bn-
}是首项为3公比为
的等比数列,
∴bn-
=3×(
)n-1⇒bn=3×(
)n-1+
.
∴sn+1-sn=2sn+3⇒sn+1=3sn+3⇒sn+1+
| 3 |
| 2 |
| 3 |
| 2 |
∵s1+
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| 2 |
∴
sn+1+
| ||
sn+
|
即{sn+
| 3 |
| 2 |
| 9 |
| 2 |
∴sn+
| 3 |
| 2 |
| 9 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴an=2sn-1+3=3n.
(2)∵数列{bn}满足bn+1=
| 1 |
| 2 |
| 1 |
| 4 |
| 7 |
| 2 |
∴b1-
| 1 |
| 2 |
且bn+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
bn+1-
| ||
bn-
|
| 1 |
| 2 |
∴数列{bn-
| 1 |
| 2 |
| 1 |
| 2 |
∴bn-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题主要考查数列递推关系式的应用以及等比关系的确定.在给出递推关系式求数列的通项时,一般是构造新数列求解其通项.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |