题目内容
已知数列{an}的前n项和Sn=
n(n+1)(n+2),试求数列{
}的前n项和.
| 1 |
| 3 |
| 1 |
| an |
由Sn=
n(n+1)(n+2),
当n=1时,a1=S1=2.
当n≥2时,an=Sn-Sn-1=
n(n+1)(n+2)-
(n-1)n(n+1)=n(n+1).
当n=1时上式成立,所以an=n(n+1).
则数列{
}的前n项和为:
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
.
| 1 |
| 3 |
当n=1时,a1=S1=2.
当n≥2时,an=Sn-Sn-1=
| 1 |
| 3 |
| 1 |
| 3 |
当n=1时上式成立,所以an=n(n+1).
则数列{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |