题目内容
已知函数f(x)=①f(x)在x=0处连续;
②f(x)在x=-3处连续;
③f(x)在x=0处可导;
④f(x)在x=-3处可导.
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
【答案】分析:由函数的解析式利用函数的连续性的定义判断f(x)在x=0处连续,在x=-3处不连续,再根据函数在某处可导的判断方法判断f(x)在x=0处不可导,在x=-3处不可导,从而得出结论.
解答:解:由于f(0)=0+2=0,
=
=2,故函数f(x)在x=0处连续,故①正确.
由于f(-3)=2,
=
=-6,f(-3)≠
,故f(x)在x=-3处不连续,
故②不正确.
由于f(x)在x=0处的左导数为0,右导数为1,故f(x)在x=0处不可导,故③不正确.
由于f(x)在x=-3处的左导数为-1,右导数为0,故f(x)在x=-3处不可导,故④不正确.
故选A.
点评:本题主要考查函数的连续性的定义,函数在某处可导的判断方法,属于基础题.
解答:解:由于f(0)=0+2=0,
由于f(-3)=2,
故②不正确.
由于f(x)在x=0处的左导数为0,右导数为1,故f(x)在x=0处不可导,故③不正确.
由于f(x)在x=-3处的左导数为-1,右导数为0,故f(x)在x=-3处不可导,故④不正确.
故选A.
点评:本题主要考查函数的连续性的定义,函数在某处可导的判断方法,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|