题目内容
已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
=(sinA+sinC,sinB-sinA),
=(sinA-sinC,sinB),且
⊥
,
(1)求角C的大小;
(2)若a2=b2+
c2,试求sin(A-B)的值.
| m |
| n |
| m |
| n |
(1)求角C的大小;
(2)若a2=b2+
| 1 |
| 2 |
(1)∵
=(sinA+sinC,sinB-sinA),
=(sinA-sinC,sinB),且
⊥
,
∴
•
=(sinA+sinC)(sinA-sinC)+sinB(sinB-sinA)=0,
即sin2A-sin2C+sin2B-sinAsinB=0,
整理得:sin2C=sin2A+sin2B-sinAsinB,
由正弦定理得:c2=a2+b2-ab,即a2+b2-c2=ab,
再由余弦定理得:cosC=
=
,
∵0<C<π,∴C=
;
(2)∵a2=b2+
c2,
∴sin2A=sin2B+
sin2C,即sin2A-sin2B=
,
∴
-
=
,即cos2B-cos2A=
,
∵A+B+C=π,即A+B=
,
∴cos(
-2A)-cos2A=
,即-cos(
-2A)-cos2A=
,
整理得:
cos2A+
sin2A+cos2A=-
,即
cos2A+
sin2A=-
,
∴sin(2A+
)=-
,
则sin(A-B)=sin[A-(
-A)]=sin(2A-
)=-sin(2A-
+π)=-sin(2A+
)=
.
| m |
| n |
| m |
| n |
∴
| m |
| n |
即sin2A-sin2C+sin2B-sinAsinB=0,
整理得:sin2C=sin2A+sin2B-sinAsinB,
由正弦定理得:c2=a2+b2-ab,即a2+b2-c2=ab,
再由余弦定理得:cosC=
| a2+b2-c2 |
| 2ab |
| 1 |
| 2 |
∵0<C<π,∴C=
| π |
| 3 |
(2)∵a2=b2+
| 1 |
| 2 |
∴sin2A=sin2B+
| 1 |
| 2 |
| 3 |
| 8 |
∴
| 1-cos2A |
| 2 |
| 1-cos2B |
| 2 |
| 3 |
| 8 |
| 3 |
| 4 |
∵A+B+C=π,即A+B=
| 2π |
| 3 |
∴cos(
| 4π |
| 3 |
| 3 |
| 4 |
| π |
| 3 |
| 3 |
| 4 |
整理得:
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 4 |
∴sin(2A+
| π |
| 3 |
| ||
| 4 |
则sin(A-B)=sin[A-(
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| ||
| 4 |
练习册系列答案
相关题目